Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Orphanet J Rare Dis ; 19(1): 67, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38360726

RESUMO

INTRODUCTION: Ataxia telangiectasia (A-T) is an autosomal recessive neurodegenerative disease with widespread systemic manifestations and marked variability in clinical phenotypes. In this study, we sought to determine whether transcriptomic profiling of peripheral blood mononuclear cells (PBMCs) defines subsets of individuals with A-T beyond mild and classic phenotypes, enabling identification of novel features for disease classification and treatment response to therapy. METHODS: Participants with classic A-T (n = 77), mild A-T (n = 13), and unaffected controls (n = 15) were recruited from two outpatient clinics. PBMCs were isolated and bulk RNAseq was performed. Plasma was also isolated in a subset of individuals. Affected individuals were designated mild or classic based on ATM mutations and clinical and laboratory features. RESULTS: People with classic A-T were more likely to be younger and IgA deficient and to have higher alpha-fetoprotein levels and lower % forced vital capacity compared to individuals with mild A-T. In classic A-T, the expression of genes required for V(D)J recombination was lower, and the expression of genes required for inflammatory activity was higher. We assigned inflammatory scores to study participants and found that inflammatory scores were highly variable among people with classic A-T and that higher scores were associated with lower ATM mRNA levels. Using a cell type deconvolution approach, we inferred that CD4 + T cells and CD8 + T cells were lower in number in people with classic A-T. Finally, we showed that individuals with classic A-T exhibit higher SERPINE1 (PAI-1) mRNA and plasma protein levels, irrespective of age, and higher FLT4 (VEGFR3) and IL6ST (GP130) plasma protein levels compared with mild A-T and controls. CONCLUSION: Using a transcriptomic approach, we identified novel features and developed an inflammatory score to identify subsets of individuals with different inflammatory phenotypes in A-T. Findings from this study could be used to help direct treatment and to track treatment response to therapy.


Assuntos
Ataxia Telangiectasia , Doenças Neurodegenerativas , Humanos , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Leucócitos Mononucleares/metabolismo , Doenças Neurodegenerativas/metabolismo , Fenótipo , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , RNA Mensageiro/metabolismo
2.
bioRxiv ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38076988

RESUMO

CD4+FOXP3+ regulatory T (Treg) cells maintain self-tolerance, suppress the immune response to cancer, and protect against tissue injury in the lung and other organs. Treg cells require mitochondrial metabolism to exert their function, but how Treg cells adapt their metabolic programs to sustain and optimize their function during an immune response occurring in a metabolically stressed microenvironment remains unclear. Here, we tested whether Treg cells require the energy homeostasis-maintaining enzyme AMP-activated protein kinase (AMPK) to adapt to metabolically aberrant microenvironments caused by malignancy or lung injury, finding that AMPK is dispensable for Treg cell immune-homeostatic function but is necessary for full Treg cell function in B16 melanoma tumors and during acute lung injury caused by influenza virus pneumonia. AMPK-deficient Treg cells had lower mitochondrial mass and exhibited an impaired ability to maximize aerobic respiration. Mechanistically, we found that AMPK regulates DNA methyltransferase 1 to promote transcriptional programs associated with mitochondrial function in the tumor microenvironment. In the lung during viral pneumonia, we found that AMPK sustains metabolic homeostasis and mitochondrial activity. Induction of DNA hypomethylation was sufficient to rescue mitochondrial mass in AMPK-deficient Treg cells, linking DNA methylation with AMPK function and mitochondrial metabolism. These results define AMPK as a determinant of Treg cell adaptation to metabolic stress and offer potential therapeutic targets in cancer and tissue injury.

3.
Sci Adv ; 9(47): eadj1261, 2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-37992162

RESUMO

The biological role of the repetitive DNA sequences in the human genome remains an outstanding question. Recent long-read human genome assemblies have allowed us to identify a function for one of these repetitive regions. We have uncovered a tandem array of conserved primate-specific retrogenes encoding the protein Elongin A3 (ELOA3), a homolog of the RNA polymerase II (RNAPII) elongation factor Elongin A (ELOA). Our genomic analysis shows that the ELOA3 gene cluster is conserved among primates and the number of ELOA3 gene repeats is variable in the human population and across primate species. Moreover, the gene cluster has undergone concerted evolution and homogenization within primates. Our biochemical studies show that ELOA3 functions as a promoter-associated RNAPII pause-release elongation factor with distinct biochemical and functional features from its ancestral homolog, ELOA. We propose that the ELOA3 gene cluster has evolved to fulfil a transcriptional regulatory function unique to the primate lineage that can be targeted to regulate cellular hyperproliferation.


Assuntos
Fatores de Alongamento de Peptídeos , RNA Polimerase II , Animais , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Fatores de Alongamento de Peptídeos/genética , Primatas/genética , Elonguina/genética , Família Multigênica , Sequências de Repetição em Tandem/genética
4.
Sci Rep ; 13(1): 4283, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922640

RESUMO

Bacterial pulmonary infections are a major cause of morbidity and mortality in neonates, with less severity in older children. Previous studies demonstrated that the DNA of CD4+ T cells in the mouse lung, whose primary responsibility is to coordinate the immune response to foreign pathogens, is differentially methylated in neonates compared with juveniles. Nevertheless, the effect of this differential DNA methylation on CD4+ T cell gene expression and response to infection remains unclear. Here we treated E. coli-infected neonatal (4-day-old) and juvenile (13-day-old) mice with decitabine (DAC), a DNA methyltransferase inhibitor with broad-spectrum DNA demethylating activity, and performed simultaneous genome-wide DNA methylation and transcriptional profiling on lung CD4+ T cells. We show that juvenile and neonatal mice experienced differential demethylation in response to DAC treatment, with larger methylation differences observed in neonates. By cross-filtering differentially expressed genes between juveniles and neonates with those sites that were demethylated in neonates, we find that interferon-responsive genes such as Ifit1 are the most down-regulated methylation-sensitive genes in neonatal mice. DAC treatment shifted neonatal lung CD4+ T cells toward a gene expression program similar to that of juveniles. Following lung infection with E. coli, lung CD4+ T cells in neonatal mice exhibit epigenetic repression of important host defense pathways, which are activated by inhibition of DNA methyltransferase activity to resemble a more mature profile.


Assuntos
Infecções por Escherichia coli , Pneumonia Bacteriana , Animais , Camundongos , Linfócitos T/metabolismo , Escherichia coli/genética , Animais Recém-Nascidos , Pulmão/metabolismo , Pneumonia Bacteriana/metabolismo , Metilases de Modificação do DNA/genética , Infecções por Escherichia coli/genética , Metilação de DNA , Linfócitos T CD4-Positivos , Expressão Gênica
5.
bioRxiv ; 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38168346

RESUMO

Pathogen clearance and resolution of inflammation in patients with pneumonia require an effective local T cell response. Nevertheless, local T cell activation may drive lung injury, particularly during prolonged episodes of respiratory failure characteristic of severe SARS-CoV-2 pneumonia. While T cell responses in the peripheral blood are well described, the evolution of T cell phenotypes and molecular signatures in the distal lung of patients with severe pneumonia caused by SARS-CoV-2 or other pathogens is understudied. Accordingly, we serially obtained 432 bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia and respiratory failure, including 74 unvaccinated patients with COVID-19, and performed flow cytometry, transcriptional, and T cell receptor profiling on sorted CD8+ and CD4+ T cell subsets. In patients with COVID-19 but not pneumonia secondary to other pathogens, we found that early and persistent enrichment in CD8+ and CD4+ T cell subsets correlated with survival to hospital discharge. Activation of interferon signaling pathways early after intubation for COVID-19 was associated with favorable outcomes, while activation of NF-κB-driven programs late in disease was associated with poor outcomes. Patients with SARS-CoV-2 pneumonia whose alveolar T cells preferentially targeted the Spike and Nucleocapsid proteins tended to experience more favorable outcomes than patients whose T cells predominantly targeted the ORF1ab polyprotein complex. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize patients who recover, yet these responses progress to NF-κB activation against non-structural proteins in patients who go on to experience poor clinical outcomes.

6.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202229

RESUMO

Alveolar epithelial cell (AEC) mitochondrial (mt) DNA damage and fibrotic monocyte-derived alveolar macrophages (Mo-AMs) are implicated in the pathobiology of pulmonary fibrosis. We showed that sirtuin 3 (SIRT3), a mitochondrial protein regulating cell fate and aging, is deficient in the AECs of idiopathic pulmonary fibrosis (IPF) patients and that asbestos- and bleomycin-induced lung fibrosis is augmented in Sirt3 knockout (Sirt3-/-) mice associated with AEC mtDNA damage and intrinsic apoptosis. We determined whether whole body transgenic SIRT3 overexpression (Sirt3Tg) protects mice from asbestos-induced pulmonary fibrosis by mitigating lung mtDNA damage and Mo-AM recruitment. Crocidolite asbestos (100 µg/50 µL) or control was instilled intratracheally in C57Bl6 (Wild-Type) mice or Sirt3Tg mice, and at 21 d lung fibrosis (histology, fibrosis score, Sircol assay) and lung Mo-AMs (flow cytometry) were assessed. Compared to controls, Sirt3Tg mice were protected from asbestos-induced pulmonary fibrosis and had diminished lung mtDNA damage and Mo-AM recruitment. Further, pharmacologic SIRT3 inducers (i.e., resveratrol, viniferin, and honokiol) each diminish oxidant-induced AEC mtDNA damage in vitro and, in the case of honokiol, protection occurs in a SIRT3-dependent manner. We reason that SIRT3 preservation of AEC mtDNA is a novel therapeutic focus for managing patients with IPF and other types of pulmonary fibrosis.


Assuntos
Amianto/efeitos adversos , Dano ao DNA , Expressão Gênica , Fibrose Pulmonar Idiopática/etiologia , Mitocôndrias/genética , Monócitos/metabolismo , Sirtuína 3/genética , Animais , Biomarcadores , DNA Mitocondrial , Modelos Animais de Doenças , Humanos , Fibrose Pulmonar Idiopática/metabolismo , Fibrose Pulmonar Idiopática/patologia , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Mitocôndrias/metabolismo , Monócitos/imunologia , Monócitos/patologia , Estresse Oxidativo , Sirtuína 3/metabolismo
7.
Mol Cell ; 81(10): 2076-2093.e9, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-33756106

RESUMO

The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient, growth, and oncogenic signals. We found that mTORC1 stimulates the synthesis of the major methyl donor, S-adenosylmethionine (SAM), through the control of methionine adenosyltransferase 2 alpha (MAT2A) expression. The transcription factor c-MYC, downstream of mTORC1, directly binds to intron 1 of MAT2A and promotes its expression. Furthermore, mTORC1 increases the protein abundance of Wilms' tumor 1-associating protein (WTAP), the positive regulatory subunit of the human N6-methyladenosine (m6A) RNA methyltransferase complex. Through the control of MAT2A and WTAP levels, mTORC1 signaling stimulates m6A RNA modification to promote protein synthesis and cell growth. A decline in intracellular SAM levels upon MAT2A inhibition decreases m6A RNA modification, protein synthesis rate, and tumor growth. Thus, mTORC1 adjusts m6A RNA modification through the control of SAM and WTAP levels to prime the translation machinery for anabolic cell growth.


Assuntos
Adenosina/análogos & derivados , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Biossíntese de Proteínas , S-Adenosilmetionina/metabolismo , Adenosina/metabolismo , Animais , Sequência de Bases , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Feminino , Células HEK293 , Células HeLa , Humanos , Metionina Adenosiltransferase/genética , Metionina Adenosiltransferase/metabolismo , Metilação , Camundongos Nus , Proteínas Proto-Oncogênicas c-myc/metabolismo , Fatores de Processamento de RNA/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais , Transcrição Gênica
8.
JCI Insight ; 6(6)2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33600379

RESUMO

Regulatory T (Treg) cells orchestrate resolution and repair of acute lung inflammation and injury after viral pneumonia. Compared with younger patients, older individuals experience impaired recovery and worse clinical outcomes after severe viral infections, including influenza and SARS coronavirus 2 (SARS-CoV-2). Whether age is a key determinant of Treg cell prorepair function after lung injury remains unknown. Here, we showed that aging results in a cell-autonomous impairment of reparative Treg cell function after experimental influenza pneumonia. Transcriptional and DNA methylation profiling of sorted Treg cells provided insight into the mechanisms underlying their age-related dysfunction, with Treg cells from aged mice demonstrating both loss of reparative programs and gain of maladaptive programs. Strategies to restore youthful Treg cell functional programs could be leveraged as therapies to improve outcomes among older individuals with severe viral pneumonia.


Assuntos
Envelhecimento/fisiologia , Vírus da Influenza A , Influenza Humana/patologia , Pulmão/patologia , Pneumonia Viral/patologia , SARS-CoV-2 , Linfócitos T Reguladores/patologia , Fatores Etários , Envelhecimento/metabolismo , Animais , COVID-19/complicações , COVID-19/metabolismo , COVID-19/patologia , COVID-19/virologia , Humanos , Influenza Humana/complicações , Influenza Humana/metabolismo , Influenza Humana/virologia , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , Pneumonia Viral/etiologia , Pneumonia Viral/metabolismo , Pneumonia Viral/virologia , Linfócitos T Reguladores/metabolismo
9.
J Clin Invest ; 131(4)2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33586677

RESUMO

Alveolar macrophages orchestrate the response to viral infections. Age-related changes in these cells may underlie the differential severity of pneumonia in older patients. We performed an integrated analysis of single-cell RNA-Seq data that revealed homogenous age-related changes in the alveolar macrophage transcriptome in humans and mice. Using genetic lineage tracing with sequential injury, heterochronic adoptive transfer, and parabiosis, we found that the lung microenvironment drove an age-related resistance of alveolar macrophages to proliferation that persisted during influenza A viral infection. Ligand-receptor pair analysis localized these changes to the extracellular matrix, where hyaluronan was increased in aged animals and altered the proliferative response of bone marrow-derived macrophages to granulocyte macrophage colony-stimulating factor (GM-CSF). Our findings suggest that strategies targeting the aging lung microenvironment will be necessary to restore alveolar macrophage function in aging.


Assuntos
Envelhecimento/imunologia , Microambiente Celular/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Envelhecimento/patologia , Animais , Humanos , Pulmão/patologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Transgênicos , RNA-Seq
10.
J Clin Invest ; 130(12): 6571-6587, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-32897881

RESUMO

Tregs require Foxp3 expression and induction of a specific DNA hypomethylation signature during development, after which Tregs persist as a self-renewing population that regulates immune system activation. Whether maintenance DNA methylation is required for Treg lineage development and stability and how methylation patterns are maintained during lineage self-renewal remain unclear. Here, we demonstrate that the epigenetic regulator ubiquitin-like with plant homeodomain and RING finger domains 1 (Uhrf1) is essential for maintenance of methyl-DNA marks that stabilize Treg cellular identity by repressing effector T cell transcriptional programs. Constitutive and induced deficiency of Uhrf1 within Foxp3+ cells resulted in global yet nonuniform loss of DNA methylation, derepression of inflammatory transcriptional programs, destabilization of the Treg lineage, and spontaneous inflammation. These findings support a paradigm in which maintenance DNA methylation is required in distinct regions of the Treg genome for both lineage establishment and stability of identity and suppressive function.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/imunologia , Metilação de DNA/imunologia , Fatores de Transcrição Forkhead/imunologia , Linfócitos T Reguladores/imunologia , Ubiquitina-Proteína Ligases/imunologia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Transgênicos , Ubiquitina-Proteína Ligases/genética
11.
Genome Biol ; 21(1): 247, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32933554

RESUMO

BACKGROUND: The three-dimensional genome organization is critical for gene regulation and can malfunction in diseases like cancer. As a key regulator of genome organization, CCCTC-binding factor (CTCF) has been characterized as a DNA-binding protein with important functions in maintaining the topological structure of chromatin and inducing DNA looping. Among the prolific binding sites in the genome, several events with altered CTCF occupancy have been reported as associated with effects in physiology or disease. However, hitherto there is no comprehensive survey of genome-wide CTCF binding patterns across different human cancers. RESULTS: To dissect functions of CTCF binding, we systematically analyze over 700 CTCF ChIP-seq profiles across human tissues and cancers and identify cancer-specific CTCF binding patterns in six cancer types. We show that cancer-specific lost and gained CTCF binding events are associated with altered chromatin interactions, partially with DNA methylation changes, and rarely with sequence mutations. While lost bindings primarily occur near gene promoters, most gained CTCF binding events exhibit enhancer activities and are induced by oncogenic transcription factors. We validate these findings in T cell acute lymphoblastic leukemia cell lines and patient samples and show that oncogenic NOTCH1 induces specific CTCF binding and they cooperatively activate expression of target genes, indicating transcriptional condensation phenomena. CONCLUSIONS: Specific CTCF binding events occur in human cancers. Cancer-specific CTCF binding can be induced by other transcription factors to regulate oncogenic gene expression. Our results substantiate CTCF binding alteration as a functional epigenomic signature of cancer.


Assuntos
Fator de Ligação a CCCTC/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Metilação de DNA , Humanos , Oncogenes , Receptor Notch1/metabolismo
12.
Nat Genet ; 52(6): 615-625, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32393859

RESUMO

The COMPASS protein family catalyzes histone H3 Lys 4 (H3K4) methylation and its members are essential for regulating gene expression. MLL2/COMPASS methylates H3K4 on many developmental genes and bivalent clusters. To understand MLL2-dependent transcriptional regulation, we performed a CRISPR-based screen with an MLL2-dependent gene as a reporter in mouse embryonic stem cells. We found that MLL2 functions in gene expression by protecting developmental genes from repression via repelling PRC2 and DNA methylation machineries. Accordingly, repression in the absence of MLL2 is relieved by inhibition of PRC2 and DNA methyltransferases. Furthermore, DNA demethylation on such loci leads to reactivation of MLL2-dependent genes not only by removing DNA methylation but also by opening up previously CpG methylated regions for PRC2 recruitment, diluting PRC2 at Polycomb-repressed genes. These findings reveal how the context and function of these three epigenetic modifiers of chromatin can orchestrate transcriptional decisions and demonstrate that prevention of active repression by the context of the enzyme and not H3K4 trimethylation underlies transcriptional regulation on MLL2/COMPASS targets.


Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Proteína de Leucina Linfoide-Mieloide/metabolismo , Animais , Proteínas Cromossômicas não Histona/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Técnicas de Silenciamento de Genes , Histona-Lisina N-Metiltransferase/genética , Histonas/genética , Lisina/metabolismo , Metilação , Camundongos , Camundongos Transgênicos , Células-Tronco Embrionárias Murinas/fisiologia , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas , Transativadores/genética
13.
Sci Rep ; 10(1): 7479, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-32366930

RESUMO

People with ataxia-telangiectasia (A-T) display phenotypic variability with regard to progression of immunodeficiency, sino-pulmonary disease, and neurologic decline. To determine the association between differential gene expression, epigenetic state, and phenotypic variation among people with A-T, we performed transcriptional and genome-wide DNA methylation profiling in patients with mild and classic A-T progression as well as healthy controls. RNA and genomic DNA were isolated from peripheral blood mononuclear cells for transcriptional and DNA methylation profiling with RNA-sequencing and modified reduced representation bisulfite sequencing, respectively. We identified 555 genes that were differentially expressed among the control, mild A-T, and classic A-T groups. Genome-wide DNA methylation profiling revealed differential promoter methylation in cis with 146 of these differentially expressed genes. Functional enrichment analysis identified significant enrichment in immune, growth, and apoptotic pathways among the methylation-regulated genes. Regardless of clinical phenotype, all A-T participants exhibited downregulation of critical genes involved in B cell function (PAX5, CD79A, CD22, and FCRL1) and upregulation of several genes associated with senescence and malignancy, including SERPINE1. These findings indicate that gene expression differences may be associated with phenotypic variability and suggest that DNA methylation regulates expression of critical immune response genes in people with A-T.


Assuntos
Ataxia Telangiectasia , Metilação de DNA , Epigênese Genética , Leucócitos Mononucleares/metabolismo , Transcriptoma , Ataxia Telangiectasia/genética , Ataxia Telangiectasia/metabolismo , Feminino , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Pessoa de Meia-Idade
14.
J Clin Invest ; 130(4): 1618-1621, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125289

RESUMO

Tregs require specific epigenetic signatures to induce and maintain their suppressive function in the context of inflammation and cancer surveillance. In this issue of the JCI, Xiong and colleagues identify a critical role for the epigenetic repressor REST corepressor 1 (CoREST) in promoting Treg suppressive transcriptional and functional programs. Pharmacologic inhibition and genetic loss of CoREST in Tregs impaired organ allograft tolerance and unleashed antitumor immunity via epigenetic activation of effector T cell programs. We propose that exploiting epigenetic control mechanisms will further the translation of Treg-based therapeutics to target inflammatory and malignant disorders.


Assuntos
Proteínas Correpressoras , Linfócitos T Reguladores , Epigênese Genética , Fatores de Transcrição , Tolerância ao Transplante
15.
Sci Adv ; 5(7): eaax2887, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31281901

RESUMO

Using biochemical characterization of fusion proteins associated with endometrial stromal sarcoma, we identified JAZF1 as a new subunit of the NuA4 acetyltransferase complex and CXORF67 as a subunit of the Polycomb Repressive Complex 2 (PRC2). Since CXORF67's interaction with PRC2 leads to decreased PRC2-dependent H3K27me2/3 deposition, we propose a new name for this gene: CATACOMB (catalytic antagonist of Polycomb; official gene name: EZHIP ). We map CATACOMB's inhibitory function to a short highly conserved region and identify a single methionine residue essential for diminution of H3K27me2/3 levels. Remarkably, the amino acid sequence surrounding this critical methionine resembles the oncogenic histone H3 Lys27-to-methionine (H3K27M) mutation found in high-grade pediatric gliomas. As CATACOMB expression is regulated through DNA methylation/demethylation, we propose CATACOMB as the potential interlocutor between DNA methylation and PRC2 activity. We raise the possibility that similar regulatory mechanisms could exist for other methyltransferase complexes such as Trithorax/COMPASS.


Assuntos
Glioma/metabolismo , Histonas/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas Oncogênicas/biossíntese , Complexo Repressor Polycomb 2/metabolismo , Proteínas Correpressoras/genética , Proteínas Correpressoras/metabolismo , Metilação de DNA , DNA de Neoplasias , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , Células HCT116 , Histonas/genética , Humanos , Metilação , Proteínas de Neoplasias/genética , Proteínas Oncogênicas/genética , Complexo Repressor Polycomb 2/genética
16.
Nature ; 565(7740): 495-499, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626970

RESUMO

Regulatory T cells (Treg cells), a distinct subset of CD4+ T cells, are necessary for the maintenance of immune self-tolerance and homeostasis1,2. Recent studies have demonstrated that Treg cells exhibit a unique metabolic profile, characterized by an increase in mitochondrial metabolism relative to other CD4+ effector subsets3,4. Furthermore, the Treg cell lineage-defining transcription factor, Foxp3, has been shown to promote respiration5,6; however, it remains unknown whether the mitochondrial respiratory chain is required for the T cell-suppression capacity, stability and survival of Treg cells. Here we report that Treg cell-specific ablation of mitochondrial respiratory chain complex III in mice results in the development of fatal inflammatory disease early in life, without affecting Treg cell number. Mice that lack mitochondrial complex III specifically in Treg cells displayed a loss of T cell-suppression capacity without altering Treg cell proliferation and survival. Treg cells deficient in complex III showed decreased expression of genes associated with Treg function, whereas Foxp3 expression remained stable. Loss of complex III in Treg cells increased DNA methylation as well as the metabolites 2-hydroxyglutarate (2-HG) and succinate that inhibit the ten-eleven translocation (TET) family of DNA demethylases7. Thus, Treg cells require mitochondrial complex III to maintain immune regulatory gene expression and suppressive function.


Assuntos
Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Mitocôndrias/enzimologia , Tolerância a Antígenos Próprios/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Animais , Desmetilação do DNA , Metilação de DNA , Transporte de Elétrons , Feminino , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Glutaratos/metabolismo , Inflamação/genética , Inflamação/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Tolerância a Antígenos Próprios/genética , Ácido Succínico/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/enzimologia
17.
Sci Adv ; 4(11): eaau6986, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30417100

RESUMO

The tet methylcytosine dioxygenase 2 (TET2) enzyme catalyzes the conversion of the modified DNA base 5-methylcytosine to 5-hydroxymethylcytosine. TET2 is frequently mutated or dysregulated in multiple human cancers, and loss of TET2 is associated with changes in DNA methylation patterns. Here, using newly developed TET2-specific antibodies and the estrogen response as a model system for studying the regulation of gene expression, we demonstrate that endogenous TET2 occupies active enhancers and facilitates the proper recruitment of estrogen receptor α (ERα). Knockout of TET2 by CRISPR-CAS9 leads to a global increase of DNA methylation at enhancers, resulting in attenuation of the estrogen response. We further identified a positive feedback loop between TET2 and ERα, which further requires MLL3 COMPASS at these enhancers. Together, this study reveals an epigenetic axis coordinating a transcriptional program through enhancer activation via DNA demethylation.


Assuntos
Neoplasias da Mama/metabolismo , Proteínas de Ligação a DNA/metabolismo , Desmetilação , Elementos Facilitadores Genéticos , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas Proto-Oncogênicas/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Sistemas CRISPR-Cas , Diferenciação Celular , Estudos de Coortes , Metilação de DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/genética , Dioxigenases , Epigênese Genética , Receptor alfa de Estrogênio/antagonistas & inibidores , Receptor alfa de Estrogênio/genética , Feminino , Humanos , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteínas Proto-Oncogênicas/genética , Taxa de Sobrevida , Células Tumorais Cultivadas
18.
JCI Insight ; 3(17)2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30185658

RESUMO

Pneumonia represents the leading infectious cause of death in the United States. Foxp3+ regulatory T cells promote recovery from severe pneumonia in mice, but T cell responses in patients with pneumonia remain incompletely characterized because of the limited ability to serially sample the distal airspaces and perform multidimensional molecular assessments on the small numbers of recovered cells. As T cell function is governed by their transcriptional and epigenetic landscape, we developed a method to safely perform high-resolution transcriptional and DNA methylation profiling of T cell subsets from the alveoli of critically ill patients. Our method involves nonbronchoscopic bronchoalveolar lavage combined with multiparameter fluorescence-activated cell sorting, unsupervised low-input RNA-sequencing, and a modified reduced-representation bisulfite sequencing protocol. Here, we demonstrate the safety and feasibility of our method and use it to validate functional genomic elements that were predicted by mouse models. Because of its potential for widespread application, our techniques allow unprecedented insights into the biology of human pneumonia.


Assuntos
Pneumonia/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Estado Terminal , Metilação de DNA , Epigenômica , Fatores de Transcrição Forkhead , Humanos , Camundongos , Linfócitos T Reguladores , Transcriptoma
19.
J Biol Chem ; 293(30): 11772-11783, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29866884

RESUMO

Pediatric acute lung injury, usually because of pneumonia, has a mortality rate of more than 20% and an incidence that rivals that of all childhood cancers combined. CD4+ T-cells coordinate the immune response to pneumonia but fail to function robustly among the very young, who have poor outcomes from lung infection. We hypothesized that DNA methylation represses a mature CD4+ T-cell transcriptional program in neonates with pneumonia. Here, we found that neonatal mice (3-4 days old) aspirated with Escherichia coli bacteria had a higher mortality rate than juvenile mice (11-14 days old). Transcriptional profiling with an unsupervised RNA-Seq approach revealed that neonates displayed an attenuated lung CD4+ T-cell transcriptional response to pneumonia compared with juveniles. Unlike neonates, juveniles up-regulated a robust set of canonical T-cell immune response genes. DNA methylation profiling with modified reduced representation bisulfite sequencing revealed 44,119 differentially methylated CpGs, which preferentially clustered around transcriptional start sites and CpG islands. A methylation difference-filtering algorithm detected genes with a high likelihood of differential promoter methylation regulating their expression; these 731 loci encoded important immune response and tissue-protective T-cell pathway components. Disruption of DNA methylation with the hypomethylating agent decitabine induced plasticity in the lung CD4+ T-cell marker phenotype. Altogether, multidimensional profiling suggested that DNA methylation within the promoters of a core set of CD4+ T-cell pathway genes contributes to the hyporesponsive neonatal immune response to pneumonia. These findings also suggest that DNA methylation could serve as a mechanistic target for disease-modifying therapies in pediatric lung infection and injury.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Metilação de DNA , Infecções por Escherichia coli/imunologia , Escherichia coli/imunologia , Pneumonia/imunologia , Animais , Animais Recém-Nascidos , Linfócitos T CD4-Positivos/metabolismo , Ilhas de CpG , Epigênese Genética , Infecções por Escherichia coli/genética , Camundongos , Camundongos Endogâmicos C57BL , Pneumonia/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...